Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

½û±âÇü 5±Þ ¿Íµ¿°ú ±Ù°ü¿Íµ¿À» º¹ÇÕ·¹ÁøÀ¸·Î ¼öº¹ÇÑ »ó¾Ç ¼Ò±¸Ä¡¿¡ ´ëÇÑ ÀÀ·Â ºÐ¼®: 3Â÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀû ¿¬±¸

STRESS ANALYSIS OF MAXILLARY PREMOLARS WITH COMPOSITE RESIN RESTORATION OF NOTCH-SHAPED CLASS¥´CAVITY AND ACCESS CAVITY ; THREE-DIMENSIONAL FINITE ELEMENT STUDY

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2008³â 33±Ç 6È£ p.570 ~ 579
À̼±È­, ¹ÚÁ¤±æ, ±èÇöö, Ç㺹, ±è±¤ÈÆ, ¼Õ±Ç,
¼Ò¼Ó »ó¼¼Á¤º¸
À̼±È­ ( Lee Seon-Hwa ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø º¸Á¸Çб³½Ç
¹ÚÁ¤±æ ( Park Jeong-Kil ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
±èÇöö ( Kim Hyeon-Cheol ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
Ç㺹 ( Hur Bock ) - ºÎ»ê´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úº¸Á¸Çб³½Ç
±è±¤ÈÆ ( Kim Kwang-Hoon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
¼Õ±Ç ( Son Kwon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú

Abstract

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ½û±âÇü 5±Þ ¿Íµ¿°ú ±Ù°ü¿Íµ¿À» º¹ÇÕ·¹ÁøÀ¸·Î ¼öº¹ÇÑ »ó¾Ç Á¦2¼Ò±¸Ä¡¿¡ ´ëÇÑ ÀÀ·Â ºÐÆ÷¸¦ 3Â÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀ¸·Î ºÐ¼®ÇÏ¿© Æò°¡Çϱâ À§ÇÑ °ÍÀÌ´Ù. ¹ßÄ¡µÈ »ó¾Ç Á¦2¼Ò±¸Ä¡¸¦ ÀÌ¿ëÇÏ¿© Micro-CT·Î ½ºÄµÇÑ ÈÄ 3D-DOCTOR·Î 3Â÷¿ø À¯ÇÑ¿ä¼Ò ¸ðÇüÀ» Á¦ÀÛÇÏ¿´´Ù. Á¦ÀÛµÈ ¼Ò±¸Ä¡ ¸ðÇü¿¡ ±Ù°ü ¿Íµ¿À» Çü¼ºÇÏ°í ½û±âÇü 5±Þ ¿Íµ¿°ú ±Û·¡½º ¾ÆÀÌ¿À³ë¸Ó ±âÀúÀçÀÇ »ç¿ë ¿©ºÎ¸¦ ±¸ºÐÇÏ¿© ±Ù°ü ¿Íµ¿À» È¥ÇÕÇü º¹ÇÕ·¹ÁøÀ¸·Î ÃæÀüÇÏ¿´´Ù. ÇùÃø ±³µÎ ¶Ç´Â ¼³Ãø ±³µÎ¿¡ 500 NÀÇ ÇÏÁßÀ» °¡ÇÏ°í, ANSYS 8.0 ÇÁ·Î±×·¥À¸·Î ÀÎÀå ÀÀ·ÂÀÇ ºÐÆ÷¸¦ ºÐ¼®ÇÏ¿© Æò°¡ÇÑ °á°ú º£À̽º »ç¿ëÀ¯¹«¿¡ µû¸¥ ÀÀ·Â ºÐÆ÷ÀÇ Â÷ÀÌ´Â ¾ø¾ú´Ù. ÇùÃø ±³µÎ¿¡ ÇÏÁßÀÌ °¡ÇØÁú ¶§, ÇÏÁßÁ¡°ú ±³ÇÕ¸éÀÇ Á߽ɱ¸, ±¸°³Ãø ¹é¾Ç¹ý¶û°æ°èºÎ¿¡ °úµµÇÑ ÀÎÀå ÀÀ·ÂÀÌ ÁýÁߵǾúÀ¸¸ç, 5±Þ ¿Íµ¿ÀÌ ¾ø´Â °æ¿ìº¸´Ù 5±Þ ¿Íµ¿ÀÌ ÀÖ´Â °æ¿ì¿¡ ¾à°£ ´õ ³ô¾Ò´Ù. ¼³Ãø ±³µÎÀÇ ÇùÃø °æ»ç¸é¿¡ ÇÏÁßÀÌ °¡ÇØÁú ¶§, ÇÏÁßÁ¡°ú ±³ÇÕ¸éÀÇ Á߽ɱ¸, ÇùÃø Ä¡°æºÎ¿¡ °úµµÇÑ ÀÎÀå ÀÀ·ÂÀÌ ÁýÁߵǾúÀ¸¸ç, 5±Þ ¿Íµ¿ÀÌ ÀÖ´Â °æ¿ì°¡ 5±Þ ¿Íµ¿ÀÌ ¾ø´Â °æ¿ìº¸´Ù ¾à°£ ´õ ³·¾Ò´Ù.

The purpose of this study was to investigate the distribution of tensile stress of canal obturated maxillary second premolar with access cavity and notch-shaped class V cavity restored with composite resin using a 3D finite element analysis. The tested groups were classified as 8 situations by only access cavity or access cavity with notch-shaped class V cavity (S or N), loading condition (L1 or L2), and with or without glass ionomer cement base (R1 or R2). A static load of 500 N was applied at buccal and palatal cusps. Notch-shaped cavity and access cavity were filled microhybrid composite resin (Z100) with or without GIC base (Fuji II LC). The tensile stresses presented in the buccal cervical area, palatal cervical area and occlusal surface were analyzed using ANSYS. Tensile stress distributions were similar regardless of base. When the load was applied on the buccal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth with class ¥´ cavity were slightly higher than that of the tooth without class V cavity. When the load was applied the palatal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth without class V cavity were slightly higher than that of the tooth with class V cavity.

Å°¿öµå

ÀÎÀåÀÀ·Â;À¯ÇÑ¿ä¼ÒºÐ¼®¹ý;5±Þ¿Íµ¿;±Ù°ü¿Íµ¿;±âÀúÀç
Tensile stress;Finite element analysis;Class V cavity;Access cavity;Base

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI