Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

Journal of Advanced Prosthodontics 2020³â 12±Ç 2È£ p.67 ~ 74
Tribst Joao Paulo Mendes, de Oliveira Dal Piva Amanda Maria, Borges Alexandre Luiz Souto, Rodrigues Vinicius Aneas, Bottino Marco Antonio, Kleverlaan Cornelis Johannes,
¼Ò¼Ó »ó¼¼Á¤º¸
 ( Tribst Joao Paulo Mendes ) - Sao Paulo State University Department of Dental Materials and Prosthodontics
 ( de Oliveira Dal Piva Amanda Maria ) - Sao Paulo State University Department of Dental Materials and Prosthodontics
 ( Borges Alexandre Luiz Souto ) - Sao Paulo State University Department of Dental Materials and Prosthodontics
 ( Rodrigues Vinicius Aneas ) - Faculty of Pindamonhangaba Department of Dentistry
 ( Bottino Marco Antonio ) - Sao Paulo State University Department of Dental Materials and Prosthodontics
 ( Kleverlaan Cornelis Johannes ) - University of Amsterdam Academic Centre for Dentistry Amsterdam Department of Dental Materials Science

Abstract


PURPOSE: This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain.

MATERIALS AND METHODS: Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria.

RESULTS: The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight.

CONCLUSION: Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Å°¿öµå

Dental implants; Finite element analysis; Prosthodontics; Bone tissue; Biomechanics

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed